Search results for "plant defenses"

showing 4 items of 4 documents

Mating Status of an Herbivorous Stink Bug Female Affects the Emission of Oviposition-Induced Plant Volatiles Exploited by an Egg Parasitoid

2019

Insect parasitoids are under selection pressure to optimize their host location strategy in order to maximize fitness. In parasitoid species that develop on host eggs, one of these strategies consists in the exploitation of oviposition-induced plant volatiles (OIPVs), specific blends of volatile organic compounds released by plants in response to egg deposition by herbivorous insects. Plants can recognize insect oviposition via elicitors that trigger OIPVs, but very few elicitors have been characterized so far. In particular, the source and the nature of the elicitor responsible of egg parasitoid recruitment in the case of plants induced with oviposition by stink bugs are still unknown. In …

0106 biological sciencesTrissolcus basalis;Nezara viridula;Vicia faba;indirect plant defenses;OIPVs;elicitorOIPVscomposé volatilPhysiologyBiodiversité et Ecologiemedia_common.quotation_subjectZoologyInsect010603 evolutionary biology01 natural scienceslcsh:PhysiologyParasitoidBiodiversity and EcologyPhysiology (medical)MatingTrissolcus basalisparasitoidOriginal Researchmedia_commonTrissolcus basalis Nezara viridula host location behaviour indirect plant defences egg parasitoid recruitmentelicitorlcsh:QP1-981biologyparasitoïdeHost (biology)fungiNezara viridulafood and beveragesbiology.organism_classificationAttractioninsecte herbivoreElicitorVicia fabaElicitor; Indirect plant defenses; Nezara viridula; OIPVs; Trissolcus basalis; Vicia faba010602 entomologySettore AGR/11 - Entomologia Generale E ApplicataOlfactometerNezara viridulaoeuf d'insecte[SDE.BE]Environmental Sciences/Biodiversity and Ecologyindirect plant defenses
researchProduct

Egg parasitoid attraction toward induced plant volatiles is disrupted by a non-host herbivore attacking above or belowground plant organs.

2014

Plants respond to insect oviposition by emission of oviposition-induced plant volatiles (OIPVs) which can recruit egg parasitoids of the attacking herbivore. To date, studies demonstrating egg parasitoid attraction to OIPVs have been carried out in tritrophic systems consisting of one species each of plant, herbivore host, and the associated egg parasitoid. Less attention has been given to plants experiencing multiple attacks by host and non-host herbivores that potentially could interfere with the recruitment of egg parasitoids as a result of modifications to the OIPV blend. Egg parasitoid attraction could also be influenced by the temporal dynamics of multiple infestations, when the same …

media_common.quotation_subjectPlant ScienceInsectlcsh:Plant cultureTrissolcus basalis Sitona lineatus Nezara viridula Vicia faba indirect plant defenses multi-trophic interactions chemical ecologyParasitoidBotanylcsh:SB1-1110Original Research ArticleTrissolcus basalis Sitona lineatus Nezara viridula Vicia fabaindirect plant defenses multi-trophic interactions chemical ecologyTrissolcus basalismedia_commonLarvaHerbivoremulti-trophic interactionsbiologyHost (biology)fungichemical ecologyNezara viridulafood and beveragesbiology.organism_classificationAttractionSitona lineatusVicia fabaChemical ecologySettore AGR/11 - Entomologia Generale E ApplicataNezara viridulaindirect plant defensesFrontiers in Plant Science
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine

2015

SPE IPM UB CT1; International audience; Inducing resistance in plants by the application of elicitors of defense reactions is an attractive plant protection strategy, particularly for grapevine (Vitis vinifera), which is susceptible to severe fungal diseases. Although induced resistance (IR) can be successful under controlled conditions, in most cases, IR is not sufficiently effective for practical disease control under outdoor conditions. Progress in the application of IR requires a better understanding of grapevine defense mechanisms and the ability to monitor defense markers to identify factors, such as physiological and environmental factors, that can impact IR in the vineyard. Volatile…

[SDV]Life Sciences [q-bio]Defence mechanismsPlant Sciencelcsh:Plant cultureSesquiterpeneTerpenechemistry.chemical_compoundLaminarinPTR-QMS;SPME-GC-MS;downy mildew;methylsalicylate;plant defenses;terpenesBotany[SDV.IDA]Life Sciences [q-bio]/Food engineeringPlant defense against herbivory[SDV.BV]Life Sciences [q-bio]/Vegetal Biologylcsh:SB1-1110[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringmethylsalicylateOriginal ResearchSPME-GC-MSPtr-qms ; Spme-gc-ms ; Downy Mildew ; Methylsalicylate ; Plant Defenses ; Terpenesdowny mildewfood and beveragesElicitorHorticulturechemistry[SDE]Environmental Sciencesplant defensesDowny mildewPTR-QMSMethyl salicylateterpenes
researchProduct